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AN EXCEPTIONAL CASE OF MOTION OF THE KOVALEVSKAIA GYROSCOPE* 

V.M. STARZHINSKII 

A case of degeneracy of the Kovalevskaia solution /l/ is studied. It is shown that 
when the integration constants of the first two integrals are both zero and that of 
the reduced Kovalevskaia integral is equal to four, a unique pendulum motion of a 
specified type occurs, and no other motions being possible. 

1. Initial equations. We write the Euler-Poisson equations for the Kovalevskaiacase 
in the form 

Equations (1.1) admit four first algebraic integrals 

Z(P~ -+ Q*)+ R* - 4y = 4H, 2 (PP+ Qv') -I- Rv" = 2L (1.2) 

yp + y'2 + .>'? =c 1, (P2 _ Q2 + Zy)" + 4 (PQ + y')2 = K? 

We assume that the integration constants of the kinetic energy and kinetic moment of the body 
about the vertical (directed, for definiteness, downward) are all equal to zero, and the in- 
tegration constant of the fourth integral is equal to four 

H=C=O,K==4 (1.3) 

According to the classification of G.G.Appel'rotthecase in question belongs to the "particul- 
arly noticeable motion of fourth class* /3/ even though Appel'rot himself did not study this 
case. 

2. Set s of initial conditions: P,= o. The equations (1.2) and conditions (1.3) 
mean that the following four conditions are imposed on the initial'values It = iJ) of the varr- 
ables: 

The conditions define the set S of initial conditions in the space PO. Qo>Ro, YO, yo', ::I". Incident- 

ally, since equations (2.1) hold for any T> 0, the motion must remain within the set S in- 
vestigated in the phase space P, Q, R, y. p', y". From the first equation of (2.1) we have 

ru>, 0. 2 (P,* + Qu', -!- Rf a 4 
and in particular 

Let us put in (2.1) PO=0 and substitute the expression for vo and Y,,'~, obtained from the 
first and last equation, into the third equation of (2.1). This yields 

'IrQu' (Q,P -i- R,') + ye,'* = 0 

and consequently we find that Q,=v,"=r). Substituting these last equalities into (2.1) we 
obtain 

P, = 0 : Q,, = yu" = 0, Roa = 4y,, I',,~ + J+,'* = i (I R, ( Q fl) (2.2) 

where all subsequent equations follow from the first equation. Thus the segment (2.2) of the 
hypercurve of one dimension from which the following pendulum motion appears, belongs to the 
set s : 
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P = Q = +J' es 0, R* 3 4y, 7* + 7" = i (1 R 1 < fl 

The motion is executed about the extended axis of the ellipsoid of revolution occupying a 

horizontal position. The center of mass C of the body is raised in this dimension to the 

horizontal plane passing through the fixed point. We note that neither positionofequilibrium 
belongs to the set S and the steady rotations as well as the remaining pendulum type motions 
are not generated from it. 

3. Set s:PO+o. Assume that R,=O. Then, obtaining the expressions for y0 and y,,' 
fromthe first and second equation of (2.1) (noting that QO#O since POyO#o), we obtain 

2y, = P,,? + Qa=, J+,' = - + y,, 

Substituting theseexpressions into the third and fourth equation of (2.1) we find that 

QoVP,' + yo* = 0 
whichisimpossible, therefore 

&#o when Pa#O (3.1) 

Next we shall show that the system of equations (2.1) has no solutions when Po#O. Writing 
theexpressionfor vo from the first equation of (2.1) and substituting it into the fourth equa- 
tionof (2.1), we obtain 

YO' = --poQo t 1'1 - (f'," + VpRf)* (P,: + V&R,," < 1) (3.2) 

where the sign preceding the radical is governed by the initial value of yO'. Then, from the 
third equation of (2.1) we obtain 

ya* = 31rP$ - 31rP,2Q,2 - ‘I,(?04 + ‘la (Pd - Q,?) R," _t 2P,Q, 1/ 1 - (P,* + 'i4R,*)" (3.3) 

Next we write the second equation of (2.1) in the form 

2 (PO?, + Qouo') = --R,Y," 

and square it. Substituting the expressions for YO-YO' and uO' from the first equation of (2.1). 

@.2), (3.3) , we now obtain a biquadratic equation for R. which in turn yields 

Ho' = - (p,,? $ QoZ)4 [No (PO* -Qo*)~& W+Q0~)'--16431~ 

The expression within the square brackets will be purely imaginary only for conditions QO= p,, 

PO'< 4, in which case we have 

R,+4~ 
PO= ' PO' + $R+ p;z>, 

which, by virtue of (3.2), does not correspond to the real motion. Thus we have shown that 
in the case of P0#0 no motions of the Kovalevskaia gyroscope are possible. It followsthere- 
fore that the set S of initial conditions for the equations of motion (1.1) oftheKovalevskaia 
gyroscope consists, in the exceptional case defined by the conditions (2.1), only of (2.4),and 
apart from (2.3) no other motions are possible. 
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